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SUMMARY

A\ detinition for radins of curvature motivated by well-hnown geometrical properties of
acirele and different from the usual definition for radius of curvature = given, The nes
definition i~ u=ed to derive the usual two dimensiorned formalae for radins of carvature 1n
cartesian and polar coordinates, The usual parametric formula for the radins of cur-
vature in a two dimensional cartesian coordinate <v<tem s also derived. cast into vector
torm. wnd then physica) arguments are used to show that the vector formula for radiu- of
curvature 1= valid for space curvess By use of this result and well-known Kinematie expres
sions for the aceeleration and velocity in three dimenstonal coordinate svstems,
parametrie formulae for the radius of cursature in rectangular, evlindrical. and spherical
coordinates are derived. These formulae are then used 1o derive equations for the radiu-
of earvature in these coordinate systems when two of the variables are know o as funetion.
of the third variable and also for the case where the variables are implicithy related to
cach other. The question of compating the radius of curvature for space curves defined
only at diserete points i~ considered. and an explicit formula suitable for numerical
calenlation under these conditions i~ derived. The results of this work are then applied to

four problems:

a. The measurement of one parameter characterizing enems aireratt maneuverabiling

from radar data.

b, The design of a deviee for measurement of radins of curvature for roads or railroad
track.

e. The desian of a deviee for cheeking highspeed roads for proper banking,

do A technique for the possible use of radius of cursature concepts i the design of 4

Landd navigational sytem,
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NEW RADIUS OF CURVATURE FORMULAE AND THEIR APPLICATIONS

I. INTRODUCTION

L. Introduction. The concept of radius of curvature 3= usefud in many applications,
Because the focal length of o lens or mirror depends on the radins of curvature associated
with the definine ~urface) researchers are interested in measuring and controlling the
radius of curvatare in biological*” and non-bivlogical>™ aptical =vstems. Bent ors<ral-
are used in electron probe nieroanaly=i=.* and for this rea~on and others. there i< anin-
terest in measuring”™'! the curvature of ersstals, The concept has found application o the
[}

+

b

theory of linkage="* " in gear design.* in rotor vibration,™ g flus containment.! and

in hone prostesis.'* To date, the radius of curvature coneept does not appear to have been

used i mine detection, bat this may change.

! toHecht and v Zagac, Opries, Addinon-Wesley Pubbishine Co. (19760,

‘o

Woosteel and DL Nowck, Meastring Radwes of Curvature of Sotr Corneal Tonves, Applicd Opros P00 N4
(1977

R, D, Lreeman, Cornead Radins of Curvature of the Kren and Cat Imestwarve Ophtiabmoliey and Vs
Secrence, 1Y, N3, 306 (FURO).
N CoS. Maclatehy, Radins of Carvature of the Corned A Fxpenimient tor thic Lite Science Pinosios Lab . et
Jour. of Physes, 40 N6 O1S (1978).
M.CoGerchman and G Co Hanter, Difrerential tedintque for dccuratedv Meesiring the Redis ot Curiatur
of Tang Radnes Concave Optical Surtfaces, OptoFng, 79N6. BIX (1980,
P Do MeGrath, Volume Method tor Finding Radius of Crervature, Shy and Tefescope, 590 T (9800
\' L, Sherstobitov, Cvlindrical Mirror With a Controlled Radius of Crrvefure Sov VL Quantun B octron,
S m K471 (1975,
V.S, Buks, Flecrron Probe Micrognalvsis, John Wdes amd Sons, Inc (1971,
b Zschech, G Merz, W Blau and K. Klewnstock, A Simple Method tor Detcmimune tic Radues ot Cunarur
ot Bent Spectrometer Crestals, Kostadl und Technihs Crystal Research and Fechinotory /50 NS0 25 olvsim
N Godwod, A0 Naevoand /0 Reh, Applivarion of Vorev Paple Crosead Spectromicrer tor Megseerin, Redne
at Curvatiere of Bent Smele Crystals, Physica Statas Solidi A Apphied Rescardh 520 N2 708 (197
VoD Skupov, G b Uspenskava, Appltication of Norav Method tor Precoaess Measuremn: of Redoes oo Can
ture e Monocrystalline Plates. Zavodshava aboratona 47 N6, 7001975,
N

KRG Matchiner and H B Mabae, Svnthesis of o Bar D inhage Coupler Caros Uiy Dortvgtives or Redea
Crrvgiure  Cirendar Puth Procedure, Mechanism and Machine Theors 12.N2 137 01977y,
RGo Mucthimer and WL HL Mabae, Svathesis of A Bar ikage Coupder Ciorves e Dorggine o Radi
Curvetuee Straicht Poth Procedure, Mechamisn and Machine Theory /0 N2 833001977

AP Brvsbaty, fool Cunigtiere Redius and Stress Concentration T Beveld tear Toon Russaan Tasineenn
Tourmal S4.NT.37 (1974

R 1L Kotcher, Frieet of Radues of Curvature of Ball Bearing Grooves on Rotor Vibrgtion, Rusaan | ngineeniny
tourmnal 35 N 1301975
Robsuno and KON havawa 2 et od Radue ot Yohe curvapere voe Pedhare Tho o e Y one o Poresgn i

Mavnct Vevembaes, Tapanese Joumal ot Applicd Physiea 7 70N9 s o197

bodohnson, Koo Burwell, POH Dangerticld, 10 Masad. and §§ M Haronon, D Camepazr Fecroig o o Mg
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The emphasis o mine wartare 1= <hifting awas from buried mines that are time
cotistting to install and remove to surface-kaid mines that can be rapidh deploved. Cone
sequently. the emphacis inomine detection i <hifting away from elosein detection to rapid
airborne methods. For the most part. these techniques vely on the refleetions of eloe

tromaenetic radiation emanating from the surface of the mine. These veflection- depemd

an:

a. The wanvelengcth of the ineident and received radiation.

b The eleetrical and thermal properties of the mine castng eompared ta the e
rounding),

v. The <hape and Tinish of the wmine ~surfaee,

The convept of radius of curyvature may prove aseful in characterizing mine shapes which

Laermine the reflectanee properties and. henceo the detectability of mines,

Dircet experimental evidenee that the electromagnetio veftected <icnal from o
tine's surfuce depends on s <shape and finish s available o sl who have <atin acarm
miulul.l_\ wattine for o trattie licht to chanee while obeerving the reflections from a nearbn
car. Fhe slrongest reflections come from the front or rear wind=hields. The weakest reblee-
tions come from the body of the vehicles especially i it is old and the Tinishe was
cared for. These observations are cimmarized by the smoathest surfaces cive the
stronzest reflections, One can also oberse that the apparent diameter of the <un g ~cen
in different reflecting ~urface- chanee~ with the ~hape of the surtacer that objects cive
Large apparent diameter while surfaces with <harp curvature eive a smaller apparen
Jrameter. When the cars staet to move, chaneing the angles between the ohiserver, the
reflector. and the <ource. one can observe that the conditions which must he <atistied {or
reflections from a flan objeet to <hine into one’s eves are stringent. while the vondition-
which mu<t he <atisfied from a curved conves object 1o <hine into one’s cves ure Jess
stringent. The cecater the angle throngh which the conves surface turns, the less strincen

i1~ the condition for the reflection to <hine into the eyes of the observer,

The person who would deteet mines from the air may like all mines 1o have conves
winid=hield-like <urtaces <o that veflections from them would be detected wath the va<e ol
reflections from o car during midday i the sommer. OF courses the desizcner of mines
does nat oblive the prerson sha sould deteet them, But how elose does e cones e how

can the influence of <hape on the deteetabiling of o carfaee-taid mine as seen from the an




be quantitied? To characterize the <hape of @ mine. ~omething usetul for evaliating
remote mine field deteetion methods acainst different mine<, the radius of carsature con-
ceptean be used. A\ surves of the titerature™ ™ failed to reveal o <vetematie radios ol cur-

vature treatnent useful for caleulating this quantity,

One purpose of this report i~ to give a camprebensive, cassetosread treatinent
which emphasizes how 10 use and how to caleolate radins of curvature, Anothier purjaese
of thi< repart s to deselop the idea of radios of curvatiure ina more natoaral and phy-iead
way than i~ usnally done,

Given a curve v =t the vsnal method ™™= of deriving the formula o the
radius of curvature at a pomnt x along the curve <tarts with the definition o

curvature't K

Jdo

\l\

where © i~ the anele between the veetor tanzent to the curve at the point v and the positinve
vandsand < dsthe curve dength measured from an achitrars point. More advaneed

i o2eTen

treatments detine curvature by

duesy

th

s
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where wis it vector tangent to the curve and < has the <ame iterpretation as i eqoae

ton thor sive™ " pacatmetrie definitions n-.nlil_\ dentified as heme n-nlui\.lh-nl tor b

Fhe raddius of curvature ;o is then defined by

(h +v" )
4 T
L
[y preatly the Tormula
IR
t i h
R N e
s derved from equation G3ewhich is applicable to a curve v = nfh civen i polar coor-

dinate<, Then. either cquation Gor ch s applied to the cquation o aevele with radios g
and 1t s shown that ¢ = aasexpecteds To thisowas s the detimtion tor vadins o corvature

i~ ~hown to be regsonable,

Fhere are o number of reasons why the traditionad appraach = not entirely
sati-factors. The definition equation 20 for vadins of carvatare appears to he “palled
ot of what™ st s not usaally part ol ane’s network o knowledae prioe to the deviva-
ticnr and ~o the denvation el i not well motisated. Sinee cadios ol caryvatare - -
dependent of the coordinate svatem it is undestrable o make referenee to acoordimate
svotem bt this i« done inthe definition equation 2n. Althoueh reterenee s made to g
conrdinate svstem in the definition, in the traditional approach it 1< not showno that the
radios of carvatare at a point along the corve i< independent of rotations or transfations
of the coordinate ~v~teni ar the tpe of coordinate “vetenn nsed. The ceoametrical inter-
prretation of vadins of curvatuee is not emphasized and <o one may tail to set anintoitine
feeling for the concept. Finallv, the elementary teaditionad treatment does nor allow ane

to actnally calenlate the radius of vurvature for eneves which are aot contined toa plane,

O
SO M A paol Vareemencsd bhichuey Ndison Wesley (1987

Mt

oM A postol, Cufcndion, Blasdell Pubhishinge flouse ¢ 1960




Heve an alternative treatiment of todios of cnrvatire o= civen whieb anero o < 1
devectss Furthermores w nmmber of nes resabts are siven which o not appear i aa
the consulted veicrences AT ot the results for cadios of carvatare developed i this oo
are summarized inc the appending Formulae which da gor appear e ol the consnldt

reference-. i the appending are destenated wath awie asternsk after the cquation nunde

AMmost evervone whe has <tudied clementars plane ceometrs knows how 1o i
the venter of g arele usine a <trateht cdee and compirs= erect perpendientar bysecnas
two arbitrary chords: the center of the civele is where the perpeadn abar aeeonn. oo
Fhis sugee~t= that the vadius ol carvature 1o a curve v = fovg o the poant ok
found by drawing one chord hetween the points octinn aend oo + A tov Ao
another ehiord between the pomts v == A v — Aviand ov tove ereet perpenidie al
bisectors 1o these chords and determine as A — 0 the coordinate~ (N Y0 whore )
perpetdicubar bisectors meets i this report the radins of cirvatuee s debine el
distance between o and )N Fieore T Ahoueh s adreads Known that e cent
of carvature of a point Ponacurve is the Bindting position of the goetal to the nve o
with a netehboring noemal, oo derivation of this resnlt alone the Tines siven bere does 1

appear to binve been previoushy done,

0

P+

P
P—
Figure 1. Defimition tor radius of curvature used in this report
P, Pand P, are three adjacent points on a curve C. The distance “s from P to ¥ cquals the
tance from P to P_. Perpendicular bisectors of these two chords meet at 4 point O, The radius
curvature for the curve C at the point P is defined as the distance from O to P in the Linut as
approaches zero.

N

= Woon Gl PO st WOOR T e o e el e o e 0
Co iy

4 v
Pho o timitien tor poonven here aay appear tooditior rrom the detemrner snaon g b s b s b
leneth o the two Chords e made equal whereas o toe detmtion sven above the paovecin o e e
sncthe sy s v ane takon te be el B dotmne ns g e alont s s T
et oty chond oot e oy ey 0 md e sl
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v hearistic dernation of equation (3 hased on the definition of radius of
cursatare given above is presented in paragraph 20\ pasimetric representation of equas
Hon 3y i~ derised in paragraph 3. In parazraph Vicis <hown that the parametric form of
equation (31 can be represented in terms of veetors, The vector form of equation (3) <how
that o s a sealar independent of coordinate ssstem rotations. translations or tvpe.
paragraph 5.t is <hown, using phy sical argument<s that the vector representation of g i-
valid for <pace carves, Paragraph 6 applies the vector equation for radius of curvature (o
cotpate the radios of curvatare in polar coordinate- both pavamerricalls amd for the viee
where ris known as a tunction of &, In paragraph 700t i< <hown that the definition for
radius of curvature adopted in this report agrecs with the useal definition, and that the
vector formuba for cadius of carvature derived inparagraph 1 agrees with a more com-
pheated vector relationship given by other anthor-, In paragraph 8. formulae for radiu-
ol curvature applicalde o space curves expressed o rectangalar. evlindrical. nd
spherical coordinates are derived. In parazraph 9. formulae for the radius of carvatare
are derived when the curve e defined implicitlyv. Paragraph 10 discusees the problem of
computing the radins of curvatare when the curve i« known at a diserete peant. and in
parazraph FLothe recnlts of paragraph 10 are applied to four engineering problems, The
appendin to this report summarizes the various formmbae and deseribes when they are

aprphicable.
1L INVESTIGATION
2. Derivation of Radius of Curvature in Rectangular Coordinates, Let P .
Pand P denote the points (v — A fiv — Ao v fopand (v 4+ A fin + A Then
g and my which denote the <Jopes of the chords from £ 1o P and from 2 10 1 Fespec-

tively are:

) 1ty AN

m, =
Ax
B e+ Ax) )
m, =

R
IB%.Y

The  coordinates (v of  the midpoint ol the firat chord -

Har+ 1y AN . ! . . .
and the coordinates (x50 of the midpoints of the second

3

. y + y 3 + A
chord "(,\ +é: . FEx) 1 + Ax)

JPhe equation of the line perpendicular to the firs

Al Al
vhord has <lope (—=1m and <o the equation of the perpendicular bisector of the fira

l'llnrll i~

0O




Yooy, l
A m,
which can be rewritten in the form
Aoy = o gy ()

Stmilarly. the equation of the perpendicalar bisector of the second chovd i«

N oy = n gy, b

I'he point XY where equations Gan and (Gh) are both <atisfied i< the center of the cirele
detined by the theee points PP and P

M Ny HyNs M maty, v .

m. m,

N Nyt vy

m. oo, (6b)

A Ay = O the coordinates INY ) approach a point in the s plane which depends on the
Pl I M |

point (v oo adong the curve, To Tind the point which (NUY) approaches a2 Ay — O,

realize that

i m. my o
A\__,“ .‘\\ 1 il
i, tmy .
him _— 1\ -
Av— 0 > Tin




tere 3 Snd v are the first and second derivatives it the point x of the carves Equations

v and (Thy are hoth reasonable: the st assert= that the difference in slopes divided by
approximates the seeomd deeivative and o the Timit as Av — 0 this approziuation i
act from the definition of sccond derivative: the second as<ert= that the averave of the
e a little to the deft and o little 1o the right of the poine of interest approvimates the
peat the point of intere<t. Fquations 7y enable o and mg 1o e sweitten correet 1o firs

ler in Aa:

", (S Car
.
,\\ -
n, VT ¢ Th
;

ternately s equations (7 and (T could hine been written doswn diveetly from the
vior series expansion, Sintilardy. the Taslor series estimates for vy and v correet 1o fiest

ler in A\ re:

v \ v 180
FAN
\ s Vot
2 13
e equations (T and (B1as Ay — 0 equations (64 can he expressed in the forme:
\ VO i
L
VIV b
A .
o l(,"'




Fhen the radins of curvature pis found from
(i

=N =N Y =)
Using equations (91 equation (1) reduces 1o equation (34

3. Paramerrie Represemtation. The curve v = {ixi conld be given in parametrie form
(i h

NS oAy = o

and there is a need to compute the radius of carvature for this case. This happens. for ex-
amples when a particle trajectors i< found from Newton’s Law of motion. To express equa-

tion (30 in parametric form. reatize that

\l_\
s oy N v
T— - R (12
da dx X
dt
d . d v >
— I
L dy' Jt dt <\ FEENAN a3
da da N L
dt

Substituting equations (1 and (12) mto equation (3 vield-:

. ‘\
. 2
<1 ' _-_>
v (V)
1] tth
(N \\l YAV
R
N




t.Vector Representation. From the definition of radius of curvature given in this
report. it is apparent that the radios of curvatare is a property of the curve alone aad not
of the coordinate sy stem. Thus, the radius of cursature is a scalar and one would expeet it

to be ""I’“'“"““"l" in terms of ~some scalar combination of veetors. If a radius vector r -

defined by

A 2 _
O = XD+ (. o

) )

where i and j are unit vectors along the x and v axis. then the velocity veetor v is given by:
AN
V(1) = 1= a0ty (16

and the aceeleration vector a is given hy
A

. LAY -
AL = v orEAEN) ol

The numerator of 11 H looks like the cube of the magnitude of the velocity sector while
the denominator of (1 B looks like the 2 component of the eros~ produet of the aceeleration
and vetocity vectors, With the help of equations (16) and (171 it can be verified that equa-

tion {1 H can be written in the form

L BEY
att) N v

In equation (18) the pumerator and denominator are both ~calars. Thus. equation (184
shows explicitly that p i~ a scalar independent of coordinate ssstem translation~, rota-

tions. or type of coordinate system used.

3. Generalization (o Space Carves, Note that equation (18) gives the radius of
curvature of a eurve confined to the (x.v) plane in terms of the magnitude of the z compo-
nent of a veetor, Suppose now that the curve is no longer confined to the (v plane. In

that case. the generalization of equation (15) i
A A A
) = D+ V) + 20k sy

Realize that the radius of curvature is defined as the Himiting position of three points and
that three paints determine a plane, Thus, in a coordinate ssstem <uitably rotated <o that
the v and v ases are in the plane of the curve, equation (18) would <till be valid, But.
there i< no need to go o a rotated coordinate svstem becanse the acceleration and veloein
veetors are the same physical vectors in hath the original and rotated coordinate <vstems,

Thus. eqquation 18) i« valid for space curves,

10




6. Representation in Polar Coordinates, In polar coordinates. the radius vector

rois wiven by
r=ra 1Y)

A
w here a_ i~ a unit vector in the direction of r. All three of the quamities in equation 19)

can be thought of as functions of time. Differentiating equation (19) with respect to time
the veloeity is found:?" 33

(200

In cquation {200, i= a unit seetor in the direction of increasing 6. The aceeleration vector

0 i\‘m 45

. - RAY n P A
a=v=r={F—ra + o + 2t0)a,

2h
From equation {20)
Vi) = 4 reg2)e,
From equations (21 and (20)
P ., . e - A
aXv=(r—rlnl — b6 + 200 k

Thus~. from equation (18)

(P2 +1202)¥2

Lty (10 + 2107

Equation (22) is the polar coordinate analog of equation (11 and is suitable if r and 6 are
functions of time. To show the reasonableness of equation (22). which is not given in any
of the cited reference~ it can be applied to a general parametrie representation of a cirele.

Such a representation is:

r= 0 = 6y

0 oM Apostol, Caulendus, Blasdell Publishing House (1962,
s K. R.Symon, Medhanios, Addison-Wesley (198 3).

11




Sabstituting the parametriec representation of a ecirele into equation 22V vields = aas

n'\ln'rlml.

Now. suppose that instead of knowing roand € as functions of time, that
i~ known a< a function of 8:

r = nb). 1233

In that casel equation 123) can be parameterized convenienthy by the relationship
6=t {2 Ly
r = nfh) = r (21
Equations 12 by and (2 W) are completely equivalent o equation (23). In equation (211
Sonld he thought of as a general parameter rather than as a time, Although in deriving
equation {221t was thought of as a times 10 one reviesws the derivation of equation (22y it

i~ apparent that it i~ in faet applicable to any parameterization of v and 6. Fram equa-
tions (2 g

P T=t
. . 125)
0 =1 0 =0

I equation (25) dots refer 1o differentiation with respeet to time and primes refer o dil-

ferentiation with respeet to 6. Using equation (250, equation 22) beeomes

B (2(),

which i~ an alternate derivation of equation (1.

\ similar technique can be used 1o derive the applicable formula for the case
where @ = (). The result = given in the appendis as equation (A0).

7. Relationship with Alternate Treatments, The observation thar equations 13)
and ¢h can be derived from both the geometrical interpretation of vadios of curvature
tparagraph 1y and the conventional definition of radius of curvatare (equations (1 ard

(20 <hows that the two definitions are equivatent,




E. Krevazig has given the resalt®’

(r-r1' - -
v 120
HrernT-T)  (rev¥ 1~

and the <ame vesult has bheen given by Buek ™ ina different natation. Lo <hos the
cipuivalence of equation 27 swith the resuft of equation (T8 given here, rewrite equatton

L8 i the torm

I trer - . i

ANINtAS LR

U~e the veetor identity
(ANB-C = A B\NU()

to write

FNEENF = N\ ), (28)
U~c the vector identity

ANBNYO=A-CB- VRO

1o write

AN TR N

Fhos equation (2281 can be written in the form

N T N T e R

and nsing equation 287 equation (817 s <how 1 he coquvalent to 200

.

boRrenser, Ve i Do s Mo e o Talin Wal v S de 1 Yy

TR Buck b Bk b et e Mot FLl T e




8. Formulae for the Radius of Curvature in Three Dimensions. \ generaliza-
ton of equation (1B valid for a space curve expressed in rectanenlar coordinates can be
found a~ follows. Ditferentiate equation (13)" twice to obtain the velocity and aeeelera-

tion vectors, Then. the radius of curyature is found from (18):

(§:+\-:+;:)_x,_‘ ,
- (h

TR S S VRN LA SN SR O3)

Similarhv, a0 generalization of equation (22) valid for evlindrical coordinates
mas be obromed. Realize thar the generalizations of equation (20) and equation 21)

valid for evlindrical coordinates are:*?

. . « N ,
V= x\I' + r()/x\lﬂ + zk: 120
w = (F— i) 1\1' + il + :IF‘(;i{;‘,, + 7k 2n’

Then. the paranctrie formuba for the radius of carvatare in evlindrical coordinates can

be written Joom equation (881 The resalt is given in the appendin as equation e\ i2,

Simitarhv. a generalization of equation (220 valid for spherical coordinates may he

abtained. It i~ knowo in <pherical coordinates that:*

A

v=ra + 0 :/;(, + ro ~infl {‘I:’:
a o= F— o — o aint 0) ‘}. + b + 20— 17 ~in B van O a,
+ 0o <infl + 20 <in 6 + 200 cos ) ;I‘l'_,
Fhen the parametrie Tormula for the radius of curvature in spherical coordinates can be

written from equation (18y The result i< given in the appendis as cquation (A 16,

Fhe representation 11 B i= nseful when oo and 7 are known as funetion- of time,
i

Alernately. the equations of the carve might be wiven in the form:

AR AV * 7= N, 2

Fo et an explicit formaba valid in this case. express equation (2 parametricalls by the

:'olll;lllnll-:

=L VoM 7 = 2

TR R OSGhen Me by AdBison Wedey (19 3y




Then. the appropriate formula tor the radius of curvatare can be found from (1 H'. The
results are givea in the appendin as equation (AY). The same technique is used to derive
eqprations $ V1O) and (ALY from (A8),

Equation (A12) i~ useful when the coordinates o 6. and 2 are hnown a~ functions
of . Equations (AR3) (VR and (VLS which are useful if two of the coordinates are
hnown a~ a function of the third coordinate are derived by setting the independent

variable equal 1o 1 and then applyving equation (A12),

Simibarly. equation (A10) i~ useful when the coordinates v, 6, and @ are known as
functions of t. Fquations ¢ VED)L (A8 and (V19 which are useful if two of the coor-
dinates are known as a function of the third coordinate. are derived by <etting the in-

dependent variable equal 1ot and then applyving equation (A 16),

9. Radius of Curvature for Corves Known tmplicitds. The formulae derived up
1o this point and summarized in the appendin (A through (A T9) are adequate if the
equations of the curve are known parametcically orif the equations of the curve can he

explivithy <olved for ane af the saciables, Formulae are needed for the radin- of corvature

when the equation of the curve is known implicitly.

Consider the curve defined v Fivay = 00 To find a formula tor the radius of

cunyvature realize that the total differential dF i siven |p}

dbF = F v+ F dv = 0, 30
o oy oy : ‘ o
where l'\ = _ and I'\ = . The derivative ZZ s readily computed from equation (301
dy ah da
‘.
dy N RO
da |‘\

|z|ln;|lmn (37 sives ‘__ a~a funetion of ~ and ‘. li_\ differentiating equabion (300 again

U
\|“‘\ . . .
—— van be computed as o funetion of N and s
\‘\“




(!2) ‘<I\> l( l\\“\ |\\“\>
\ l- !

Jdn RANRE AN Jh
\
| ( Pk odee b Cdvy b e \I\|>
\l\ l\:
|\l\\+l\l\\‘\ l\l\\ l\l\\\
1 151

Sinee v and y 7 are known from equations 1300 and G the radius of carvature can be

obtained from equation (\2)

Ao alternative devivation of cquation (321 can be obtained trom equation (A3 by
cotpiting Voand N

Now suppose tu the radias of carvature i~ 1o be computed and the carve - siven

implicitly in polar coordinates by Firth = 0 bnothat cases an areoment similar to the one

civett ahove shows that

b b
o — (35384
oo
and
(’:F (l]l i :lvl'l""l’l'vl
— A h
Jdo- [
I
Stnee v and e are knowan frome equations £330 and £33 D the radins of coevature can e

tound from equation A0

16
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Ve alternate derivation of cqnanion (350 van be obtained from equation A6 i

computing 87 and 67,

To compute the radins of curvature for a <pace curve ziven iplicithy i cartesion
coordinates as the intersection of the surfice Finaezr = 0 with the curface G = 0
proceed as follows, First from the total difterential of the functions b oand ¢

Fodv + Fody + 1 ds = o 30a

(;\ I+ ‘;‘ tl\ + G ods = 0, 30h

Now. suppose s considered the independent variable <o that the dappropriate equuition

o n=e s equation (AU Alernatelyo s and 2 could he considered the independent variable

. . . . . d J
and vguations (NTOY or (AT used, From equation (300 the derivatives R A ar
readily computed by Cramee's rule: Jdn AN

! !
F ¥y ¥ F oo
X z v X
- f _ e |
G G , la G
dy _ > z , dz _ N X ‘
dx dx * (B X
F F F ¥
y z y z
G G G G
y z y z




A ot the quantities which appear in equation (374 are funetions of xove nd 20 Thue

. ) . \I;_\ Jd- s
with the help of equation (37) I—— and — can be computed as a funetion of the points
N Jdh-

vovoand zalong the curve and then the radios of corvature can be compated from equa-

tion A9 An explicit formula i~ not exhibited for this case.

\ ~umilar procedure can be nsed it the equation of the corve i- aiven implicith

mn Cy lindrical coordinates as the intersection of the surface Firf.zy = 0 with the <urface
Giet 2y =00 11 8 is regarded as the independent variable then d_r;uul‘_lf_mn be computed:
du Jdo
F F F
_ l 3 z r Fe
l G G |G G
ar S L dz r &
du T T 138)
' by F a8 F F
for z r
G
J r G G G
i 2 r z

From equation (381 ¢ and 27 can be compuated and then the radias of curvature fonnd

from equation (A1

The <ame technigue deseribed above for rectangalar and evhindrical coordinates
can be used 1o compute the radins of curvature in spherical coordinates when the curve i-

known implicitly.

10. Radius of Curvature for Carves Known at Diserete Poines. The tormualae
derived or de-eribed in the |.rm-m-1|iuu ~ection ean he u-ed when the cquation of the curve
i~ known i an analvtical forne which can be differentiated at least twiees to practical v
viistanees, the curve is often known anly at diserete point- and there s g nead ocom-

pute the radine of curvature for this case. Several approaches can be used,

Cue approach i~ o ase the value ot the faecion at the disorete pots 1o
evaluate the appropriate first and second devisatives, Formubae for dome this are 2iven
i nmerical analvsic book<""" and research article< ™ Then the appropoate tormimty
choosen from equations (A1} throuch (A2 H can be used to evaluate the cadings ot

cursatire.

it : A . R

AL GoSalvadon and ST Baron, Nremernodd Merisodso o Daemccrne, Prentnoe Hallodne c1aeds
T .
ONCls CHndbook o Neomeried Methods and Vppdicarons Sddison Woesley Pabbishio, ¢ oo

N . .
EoScherd, Somoracal tneiy s, MoGiaw HUE Book Coo e 1968,

i

A oNavizhy and MO LB Golav s USmoethine and Fatterentinion ot Dot by Stnplite Lot Squcses P
duted, T Anal Chem 9o 1627 (1964

IS




Another approach i~ to it the diserete “point= with o cantinuons. fwice
ditfeentiable function that approsiniates the discrete paitt=. Fhe fit might be done b
the method of least squares™ 7 ar by ans other method judeed appropriate. From the
fitted analytieal formuta. the fiest and <econd derivatives can be computed and then the

radius of curvature found from the approprigte equation AL throngh (A2 1,

I this paragraph. a method i~ developed for computing the radins of curvature

when the curve based on the

known at three adjacent diserete points. The idea
following obervations. \ny three points in space define a plane providing oo two point-
coinetde and the three points are not co-linear, These three points determine o circle in
that |»l;mr and the radius of curvature alone the curve between the three points s here
defined to be the radius of that cirele,

To caleulate the radins of curvature. denote the coordinates of the center point
and the two adjacent points relative to an arbitrary origin by ro. rcand vy respectively,
Denote the veetor from vy to vy by sy and the vector fronr vo 1o ey by vy Let g oand ny

denote unit vectars in the direction of v, and v, Then.

V= — g Vi, TP — 1390

s A\ A [ .

n, - n, o= o IR
vy \

Denote a unit vector normal to the plane of oy and ny by e Then,

ny, = n, \on,.

R

\unit veetor normal to vy and in the plane of +y .nul v 1= n. Ny Smabarly, aounit vees
tor sortd to vz and in the plane of s and sy i N g Thuss the parametrie equation

oi a line perpendicolar to sy at the midpoint of vy aud e the plane of vyand vy -

TR ReRtony s editor Saorces et dppdeccide Merocoiazos 1O MEL D w o

Rl Hawdhbook o Nl Mogrc gy e cadie o Wodos Pob e o e
Y
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AoNavizhy and MO P G et oan and T e 0t Par B S T L ast S e
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A N

where the orizin associated with the vector eis the pomnt eo The triple vectorn crass pro-

et in o b can be redi eed
m, NN, = ny— np-n;ng,

s that evpuation v Ty can e written in the Tonn

/ \ . B A B .
(R L O T P TR N PR R 1 I (1
L hl
!
. . . - . . . {
~unilarly the parametric couation of wline perpendicular to vy the midpoont of s 2aind i
o the plane ot soand v, - i
|
. . .. . ;
r m, + RSN B | T R 12
A /
Fhe interseetion of the focus ot points defined by b 1owith the loe s of points detined

2y detine the center of the cireles Totind this point et eg and vy denote the compon

of v an the oy and o, directions. Then.
(A= SN | FUN A A ) I REE

Comparicon ob 130 awd D7 implies

\ . .
ry = o=ty ey




and tha< i toen iiphies cquanion CEh cane be exprressed nonqparanictricaliy b

ot ensr, T 4 o1 ha

Stnibarhy s cgquation 1200 expressed nonsparametrically by

llll.lAi;l, + o, = AR BRI

N

Fhe center of the cirele s where equations ¢ and cEH are <simubtanconsby <atistied,

Fhis i~ tound Trom cbh by Cramer’s rale:

. v, PR TR
! ; RN
Ity eny v
R NN,y
r. ) 1 {50

Iy nsy

Faquation (5 i< vabid Tor non-eolinear point=: iew ny cannot be parallel orantiparalle! 1o
u; or the expression (13 becomes indeterminate. The radius of caevature s the distanee
trome ot the center ol the cirele:

o= rer) = urny 4 opnpl-rny, oo
=y + 2rpengeong + e R

Fopuation= e300 0150 and 1 1o allow the radius of curvatare to be computed numerically
ooy eaordimate ssstemand ds the dinal vresolt of this section. These equations are
concralization ol o well-known ceonicteical theoreo, In Fieore 20 AC < g diameter of o
cemncieele wath 1P oan arbatran [roinl on the <emi-cirele. Denote by vy and vy the vectors
Py and PO The well-hnown zeometrieal vcesalt = that soas novmal to s, and <o from

oo 20 the vadias o of the cirele is:




Figure 2. Generalization of a well-known geometrical result.
AC is a diameter of a circle with arc APC. P is an arbitrary point on the circumference of the circle
and if v and v, go from P to A and from P to C then a well-known geometrical result asserts that
the vectors v, and v, are orthogonal and this enables the radius of the circle to be readity computed
in terms of v, .and v, In paragraph 10, a formula for the radius of the circle is found when v,
and v. are vectors from P to arbitrary points on the circumference of the circle, and in section 12
the results of paragraph 10 are specialized to the case where iv, = v |

AR




This result s obtamed direethy from equations C85 and (161 tor the spreceral case

n, o, =
L APPEICATIONS

11, Aireraft .“ull('u\l‘l‘uhi“l). The mancuverability of enemy aireraft i~ of con-
<sderable tnterest to the triendly tighter aiveralt designer, One parameter which measares
the mancuserabilits of an aireratt i- the path length necessary for it to chanee the direes
tion of 1t center of mass throaeh a eiven anele, Thi- quantity i~ measured by the snnadlest
attaiable radius of coevature for the curve defined by the center of mass alony a fhicin
path and can he compited in the follosing wav, Suppose from radar data that the
~pherical coordinates r. H,‘ O of an enemy aireraft are known at the ith time instant. The
~pherical coordinates at the wi—1. and 14 1 time instant< define radins veetars roro.
and v Thens using equations (390 CE 0 and clo) the radius of canvatore associated
with the ith point can be computed. This can be done for alb i and the radios of camature

exhibited for all points along the tlight path,

The suceess of the <cheme deseribed above depends on the aecuraey of the
radar and the frequeney with which the data i taken, Fhe one candard desiation ereor
associated with the ith radar measirement van be represented as o -phere of tadins R
centeved about the tip of the veetor r by which we mean that about 68 pereent of the tim
the true value of the radius veetor will be within a distanee R of the measured value of

the radius veetor. Denote the distance between v and v by AL Then, necessary condi-

tion= for the radar to acearately determine the mnimum radius of curvature P ares
. min
P > m o Ri ). P 2 Arl "

12, Curvature of Railroad Track. One parameter of imterest to ensineers respon--
ble for maintaining railroads i= the horizontal curvature of o railroad track. Heee
method for measoring this quantity is deseribed. In Figare 3 1et AD represent o ~ection of
track. The vectors vy and vy are drawn from an arbitrary point I along the track in ap-
posite directions 1o point~ B and G along the track. For stinplicits . the lencth ol vy

chosen to be equal 1o the Jenght of v i
(W T I

In practice sy and s, represent rigid eods of equal lenath mounted on wheels foeared gt B
P CThe rods are joined at P <o that thes can both rotate freely aboot the point ', In
that case the radius of carvature of the track hetween the el points of the vectors vy and
s~ determined by the length of the vigid rod and the angle Tetween syoand vooas the

followitie areament <hows,




A

Figure 3. Measuring raitroad track honzontal radius of curvature.
AD represents a top view of a railraod track section.  Points B, P, and C are point on the track
{mounted on wheels) which can move. BP and PC represent ngid rods of equal length ' v, joined
at P so that they can rotate about a vertical axis through P. Then, the horizontal radius of curvature

is determined by {v, | and the angle between the vectors v, and v, .

The explicit tormula for the radios of curvatare when v, = v, s g
peetal case of the eqaations (B3 0 and ckorof paragraph 100 Bquations (830 and (159
iy
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Using (0L equation t 1) reduees 1o

N AT T v
’) - -
— (o

Yoibtnge g y2olb e

and this re<ult can be used to measure the horizontal radius ol cuevatare of the track tor

the deviee deseribed above.

Note equation (0 asserts that o ngoand oy are antiparallels which coreesponds o

~traicht track. then 4 intinite a- expected, Note alwo that equation (HO} asserts that it n,

A \ . - . . L. .
aned ng are parallel. then , - ! This contlicts with intaition <since ~ucha coarve cor-

3

responds to a very <harp curve and one would expeet 5 o be zeros Note that if the deneth
of vy s made small enoughe then oo can be made 1o approach zero tor this caseo Lrom
thi< we learn that in using 1530y the leneth v, <houbd bhe no Lareer than twiee the <mallest

radin- of curvatare that the desice s expected to measure,

With a ~uitably choosen v and vertically hinged rivid eodss cquation Oon

could al<o be used for measuring the vertical radias of carvature of railroad track.

13. Banking of Roads. Hich <pecd roads are often banked <o that an antomobal,
voing at the recommended <peed will feel an effective taree perpendicnlar to the raad ~ar-
face. This reduces the possibility of the automobile dippine adong the road towand 1h
ont=tde of the curve hecanse of centrifyeal foree when the carface frocton s~ odoe ol
Becanse of rain or snow. A< Fieare Fahoswan antomabale teaovelbme sk sped oy oo
a roed with raddins of carvature poand banked at aee aoele owall Bave ot b
perpendicular 1o the road. provided  the <peed v canishies the clarens o
v= e tan 0 A athied application of the swork done it vepenr e s
deseribed which can determine o the vadiis of corvature and the ancle ot bk oo [

periy adjosted Tor the <peed v at cach paint wlong the cueve,




my?2
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Figure 4. The proper banking for a level curved road.

P represents the center of mass of an automobile moving with speed v perpendicutar to the plane
of the paper. AB represents a road surface banked at an angle ! with respect to the honzontal
AC. The road is curved with radius of curvature ;,. The net effective force acting on the automobile
has two components: a vertical companent mg and a horizontal component mw /;i. The diagram
shows that when the condition tan /) = v:/(/)g) is satisfied that the effective force acting on the

automobile is perpendicular to the road surface.




A deviee for aecomplishing this i ~ketehed in Figure 50 AR BC and BD all
represent rigid rasds mounted on wheels qad each of the points AL B, Coand D) are 4 con-
veaiently cliosen height b above the ground, For convenienee, rods BA and BC are chosen
to be of equal length with rod BD and. absol conveniently chosen to be equal 1o a lane
width or come integer mubtiple of o lane width, Rods AR BC and BD have holes drilled
<o that they can all rotate freely about o vertical pin located at point B, Four people
focated at points AL B Coand D are required to operate the device, A= people located
point~ v Boand € walk along the road surface. cach one keeps the wheels o the painted
line which defines the outside of the curve while the person at 1 keeps the wheel onthe
|);linh'll line which defines the inside of the curve and also km',b the rod BD appros-
imately perpendicndar to both carves, Furthermaore, all four peeple keep the rods of
length happrosimatels vestical. The device has two angle measuring instruments at B,
One measures the angle between the rods BA and BC. The conine of this angle equals
n, - 0, in equation (501, The other instrument measures the angle between BD and the
horizontal and corresponds to the angle ¢ defined in Figure 1A small programmable
computer tahes as tnputs the lengl of the rod AR, the angle ABC. and the angle #. Then
the radius of curvature pis computed from equation (50} and the optimum speed from the
relationship v = (pg tan )% If the two angles are fed antomatically and continuou-ly in-
to a programmable caleulator as the deviee is moved afong the curve, tan an operator at
B can continnoush monitor the optimum speed compnted by the programmable

caleulator and eheck that iU is constant within certain limits,

The idea ilfustrated in Figure 5 i~ also applicable 1o s and railroad track,

C
h

Figure 5. Device for measuring optimum automobile speed on a banked, curved road.
The device can determine the speed of an automobile such that the effective force acting on t wili

be perpendicular to the road surface.




1. Vehicular Land Navigation System, The radius of curvature idea can be gsed
as @ basi= for a sy=tem. here calfed a vehicular Band vasivation svatem (Figare 61 where o
moving vebiele will be capable of automatically recording its current « and voeonndinates
relative o an arbitrarily placed coordinate svetene I such o <v<tem could be nade 1o

work reliabhy it wounld have at least two militars use«

J

X

Figure 6. Principle of navigation system using radws of curvature.
By knowing the radius of curvature ;{t) and the speed vit) for all yme and the mtial angle 2. the
angle . 1s known for all time (see paragraph 11). Knowing vit) and .-{t} the x and y components
of velocity are known for all time as the figure above shows. By numerncally integrating vx(ﬂ and

vy {t} the position of the vehicie 1s known for all time.




v vehicle equipped with this cqupment would be usetul tor reconnar-<anee,
W hen the operator of the sehicle encounteved obijects of wterest ttor example, mine el
a coded button could be pashed and the coordinates and aeode identitving the item ot in-
terest would be recarded on o maanetic card or stared in the menory of . procramoable
calealator. A the base camp or o the vehivte the int - ation cauld be recalled and

recorded on womap under less hazardous candition.,

The <ceond application involves controb of resources by o commander, The
antomatic vehicolar navigation svatem wookd continvoustv upedate its coordinates and
place them in o register connected o aradio transmitter normally turned ott. When o
commander queried a certain sehieles the rransmitter would automatically respond st
s coordinates and with a completely automated svstem micht be able todo this guickts
enongh <o that the cnemy wonld not hive time o set a five U ore itricate system al-o
could quickly and awtomatically transmic any intelligencs <tored on the magnetie card

deseribed in the first ~votem.

How could avehicular Tand navication =v<tem be imade? One swan o do thas wonld
be to have a erroscopesonnted sy <tem whiteht would pointin a reterence direction, When
the vehiele’s \[N‘l'll andd the direction of the vehiele’s maotion relative 1o the reterence direc-
tion are knowos the coordinates of the sehiele could e cantinuonsdy apdated vaine a pro-
cramuable caleulior. Sinee exroscopes are expensive and trazile, possibiv atess expen-
~tve andd more practical way to mplement sach @ svstem would be o use accamventional
cotttfrtss o prattd Lo the velerenes direction, A didbicalis with o conventional conpuess -
that it the vehicle voes over a bampeor passes by aomaenetized objecr snch s atank. then
the compass will turn despite the taet that the vebiele mas nor bane chanzed divection
and ~o the compass vives a talse reading, Hothe ancte the tront wheel nrakes swathothe 1or-
ward ini= of the vehiele = known, adong swith the specd ol the sehiele and this intara-
Lo 1= c-umlulru'll with the anealar movements ol the CONras- wheel ||m~~|lnl\ miea=nred
opticallvic the faet that the compas< i acting eeratically can he deteomined autonaneadis
by the <setem. For example. il the vehiiele = monvine g =teateht e as determined by
the speedometer. and the anzle of the front wheel with the torward asis of the veliete and
the compa== i~ moving about a broad ancolar canges then the ssaem wonkd hoos tha the
compass i~ acting ereatically. Phosowith o conventional compass, there i g need o age
datine the vebhiele™s coordinanes durine the time when the (REUTIENER 1~ hnwn 1on b e
enrate, Phis need can be satistied byoaosv-tem hased onothe cadins ol cuarvatie conep

which swill now he deseribned.,

N
A B . .
Phe direction b the vebircles tomeand e s denme §oas the direc e the vebincio w0 e e ETITIN P

stitace wath the sicepmy wheet dead conter The stoenme wieel oo doad centos wlen b s o d

the patle ot the velucte fue mominete radis f gt

\|’




In the disenssion up 1o this point. the radine of curvature has been delined
i =neh aoway thatitis always positive, Asehiiele moving in o straight line follows o path
with zero curvature and one would expeet that positive or negative cunvature conld e
assigned 1o the vehiele’s path depending on whether the steering wheel i« tuemed o the tef
or the richt, A< Figure 7 show-a vehicle movine connterclockwise corresponds to < and ©
iereasing at the <ame time and =0 it equation (b is writtens without an abolute value
sizn. thi- feads to positive curvature i equation 31 Thuso i a vehiele moving forw ard.
positive radius of curvature correspordds to turming the <eering wheel 1o the left from
dead center, Similarlyv, when the steering wheel i~ to the right of dead center, this cor-
respotieds 1o clochwi-e motion for a forward moving vehicle and aooegative radios of cur-
vature, The magnitude of the angle which the front wheels make relative 1o the forward
anis of the sehicle determines the magnitude of the positive or negative radins of cure-
vature tor the sehicle, The relationship between these quantities can he measured es-
perimentally by setting the wheel at an arbitrars angle 8 with respect to the forward anis
of the vehiele and then measuring the turnine radins associated with this angle. Thic in-
formation can be stored o the programmable calealator <o that when a sen<or measures
the |vrn~,'.r;||nm;||u|.- caleulator cang in real time. convert this measurement to cadius of cur-
vature, We suppose that there are measurement svstems on the vehicle which, at any
instant of time, el the magnitude of the velacity vector v and the radins of curvature
P, Then,

d¢ Jdo
I _de _ du |t
P ds ds v
dt
which can be rewritten in the form
do v
-_ T — (h 1
dt pl)
or
1
\
i) = lduo‘,. G
pty)
U,

Loradion (517 assert= that if sithand p(t) are known at cach instant of tine. and it Oq i~
also known initiadly, then the angle which the tangent or velocits vector makes wuli the
positive xani- will he known for cach instant of time. This means that the projections of

the velocity veetor on the s and s anes are known for all time:

30




Figure 7. The sign for radius of curvature.

X

if one imagines a vehicle travelling along a curve, those points where the steering wheel 1s turned

toward the left correspond to positive radius of curvature while those points where the steering

wheel is turned toward the right correspond to negative radius of curvature.

The reason for thys

is that in counter-clockwise motion s and ¢ increase together while for clockwise motion increasing

s is associated with decreasing -

s




dh

— =t cos Qi 1520
Jdit

dy . )
— = vt =i DIl V2o
Jt

Fauations 5HT and 320 aee readihy dntearated namerically b the prrocramnhle

caleudator:

\
O =0 -+ AT INRRT
2,
A \” Al vos O (oab
vooF 0 A aino . N

Fagoation o33 makes guantitative the following intaitive result:

It the it coardinates and anele @ for the sehivle are known, then o
I\I‘.H\\l"ll'_{l‘ of e sehitele’s -[H':‘c, andd the JH-_']V {1 \\hil'h the Tront wheel- make with the
vebiel s forward anis tor adb sabisegquent tioes cnables the vehicle position. at alt <ubiee
auent line. to be predicted. Athoneh cquation o330 can conceptaally heopsed tomracek the
vebiele for all time. 1 !ll'dl‘lit'l'. the ll't'h!lil‘llt‘ i~ onfy t'\ln'rlt'lf to b gecrate for time -
tees af= which are not ton fone, fhe reason for this = that uneertantios in voand w2
copuation 3ar afeer o done e intersad lead to aoeertainties in O and o the informa-
ton et which wan the veliiele s poiating eventonally sets lostat which time tanher
intecration ot cquation 153 1= o foneer mewmnetul, Phe Jenzth of thne tor thic o g
pen depends oo the maenitudes of PyoN the precision stk sohireh these pnannities are

sreasvred. aned the nneertiinties which can he olerated in the tinal peostion,

v
1 oa




IV, CONCLUSIONS
15, Conelusions. The radin- of curvatare treatment civen in parasraph 20 while
aleehraicallv mwore difficult than the usual treatment might be expected to appeal to
cnvineer= and seientist= beeause it addresses the problenr of computing the radius of cur-
vatire i a diveet and intattive was, e provides anexample of the interplay fetween
ceometey. nnmerical method<s and calewdus iy evaluating a limit sohich some readers i

fined instructive,

some technigques suitable for the numerical esaluation of radins of carvature
are civen, Forearves conlined to the plame, cguations torand cloymas be used 1o find the
center amnd radias of carvature when the tunctional values Tt not the dertvatives e

hnown, Baguations 3% e and o) seneralize these results o <paee curves

Fhe ralios of eurvature treatment given in this report nrakes use o kineoatn
and vector niethod< techniques tamiliar to engineers and <clentist= and -0 thi< partienlar

treatment may appeal to these people more than the traditional approach,

A scarch o the iteratre failed to find the equations destenated withe ana-ten-k
e the apperedis, These and the applications are the new results of this report. Focimears
anel <cieatists who have o need to compate the radins of corvatree ooy Tind this congpata-

tion of Tormulae and the methods nsed to derive then usetut,

I closinge, the reader is eftwith some conjectnres dealing with two aspects of thas

-H}vjm'!.

W hen the equation ol the curve is knownc implicinhyCeqoations oV 2oand sV vield
the wme Tormuba ¢ A20) for the radius of curvature 10 cartesian coondiate - Vol whon
the equation of the curve i« known unphicith . cquations (A5 and cvoove b the ~atne-
formala (A2 0 tor the radiv- of curvature in polar coordinate-c Toae conp ot that o
cartestan space curves hnown implicithe cquations NG 0V TO e AT A etd e
<ame formula for the radius of corvature, amed o ~tilar resalt sl B tras oo o hindeee !

and -llhl'l’il‘il' coordimates,

s
v




Because the radius of curvatore is a0 scalar ndependent of coordinate -y oten
tran~lation=. rotations. ar type it was possible to expre-- equation 1V in vector tornn and
the vector form of the equation (A7) was useful in deriving formulae jor radive of cur-
vature in three dimensions., Numilarhyv, it s conjectured that cquation (A200 van e
represented as s scalar combination of sectors, For example, the nmmerator of cquation
A2~ VF VEY Bu how can the denominator be expressed as a sealar combinge
tion of vectors? I cquation (V204 could be exprecsed as o scalar combination ol vectar,
then equation ¢ A2h might be derived diveetiy and <traichtforwardiy feon equatiaon e\ 20

by nsing hnown veetor results,
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APPENDIX

SUMMARY OF RESULTS

Note:
e mdicated by anasterish atter the cquation number.

\-1. Two dimensional curves.

Cartestan coordmates,

Fguation ot curve given parametrically by ox nethy

ca s o
[ Y I
Iy
SN
. da
\ — .l
i
2 quation of curve given by v v Then
PRI
Ly s
Do e—_
NG
, dy
\ — .l
A

Fquation of cunve given by .y < av) Then

‘e

§2]

)
N

vt Then

Formulae which do notappearin any ot the consalted reterences ot ths report

t\

1A



ol coordmuates.

1 I gquation of curve oinven parametrically by v e don Then

AR A} ‘\ P
(i v
P — — . . Ayt
e+ i

. Ir
1 \_ RIS

dt

Lquation ot cunve snnen byt rd v Lhen

A di
I — e

Jo

.

Faguation of curve snven by ¢ 0oy Then

) . RY .

i

Jdr
\-2. Space curves,
General result, Fguation of curve is given parametricaliy by

A & A . .
roor a2k v r:a - FO. Then

vien
P N vt

3(\




Cartestan coordimates

] Fauation of curve is given parametrically by: s - st \
RN SRR
P -
e esv o e see o ven [ERI 3/_
Liny AN AR VARV LA N AN AN
. ds
AN —_—
i
N Fguation ot cunve isviven by v vina 7 5 2an Then
e RIA
BN A N
I
I R AT
. dh
\ — .l
A
S bquation of curve is eiven by v ayv ), 2 sty Then
N L+
1%
(\n: 3 /4:2 + (/u\r \n/r)l "
’ ds
N — e
dy
4 Fquation ot curve s eiven by v sz vz Then
o2 N VD
(B N
Iy
(\”_\ 4 }.,; ' (\H‘\, .\,.\,‘:)
.
3

VL),

sy e

ANy

tAYYy

YN

Ny



Oy hindrical coordinates,

1o Pqguation of curnve goven parametrically by or - reoc o0 ety 7 - 20 Then,
B S
A I
o i {1 r LAV . _ i B
(et + 20ty 7 A7 0 0 i 0l - et i
A
. dr
r —_
dt
20 Tquaton ot cunve given by 0 ey 2 - ). Then
T 32
e (RN 7' o
N L VA (A A R N AR (A LR S SN AR (T A S MR
YR
, d
{} _— .
dr
3o bquation of cunve given by v e 70 qon Thien
' . o
(' 4+
}I
T VA VAL S P E S S AR ERR Y R A S AN
A
, dr
I — el
Jdn
) Fquation of cunve enen by ez 00 ey Then
p (' vt ey -
TR I 7 N D € L B T e 7R 1T LS VA B ST AN TR R
CNT
R




, r
r Ll

dr

Spherical coordinates.

1. Fquation of cunve given parametrically by: r=rt. 0 - 0(0. 0 = o). fhen

) (40 F et sinfode
p = . (ATOVE

(! Bn,; sn U Cr0) +CF ;\r<,") sin 002 4 (ArG Br

where
AT ol sintd
B oo ori+ ¥ 1t sin i cos o

Coorosind F 2rgsinth 2 2rte cos

Fquation of cunve given by o0 =t oirk then

i bt in2ih e
- (1410 r=¢ " st ) AT
GBre st Cr0? +0C AT sinth? + (A By
where
\ ' e ant o

B o+ o m-: s cos ()

( TR 2 s v ol cos )

3. bquation ot cunvesiven byt rté ¢ oty Then

, - P T N
(e gt it

tA LN

§
B s b G v 0 Ard s ) 2 iAr Broy T




where

AT ot sntl

B 2" v smdocos
Coord"sinh 4+ 200 stk 2o’ cos i,

v

4 Fquation of curve given by - rtob 0 geen Then

(e ettt e ante

UBrsin e Gy 47 Arsin 0+ 0AMT Brioty

where
AN A A N L
B o7+ 2 st ocon

NN

( A NI

-3 hmgdicit represetation of carves.,

Iw o dimensional cunves

| Cartestan coordimates. Fguation of curve given by bosa

L ER

,r
-t b+
. oy N \ AN Y A

ab Xy

where b — .t
N

Polar coordinates  Tquation of curve siven by b 0

I -

10

(A Tay?

tA2O)

tA Yy




dbern
where |‘I [ N TN
or
Spiace curves.
I, Cartesian coordinates. Fquation of cunve detined by mntersection ol surtace
Fexovozy = O with surtace Giay .2y =00 Then
F F F F
_ X z _ y X
G G G Cch
z
ay _ P * dz Y P oy
b4
dx F F dx F
y z y z
G G G G
y z y z

I quation (A22) s used 1o compute y " and 27 Then p s computed from

cquation (AY),

2o Cyvlindrical coordinates. Fquation ol curve defined by mtersection ot surtace
borrzy O with surface Gar 2y = 0. Then
F F F F
6 z - T e
16 G G G
6 z r ¢
dr dz _ AR
3o - i — . tA23)
F F F F
r z T z
G . G G
T G T 7
b

P quation ¢A23) s used to compate ¢ and 27 Then pois compuated Trom
couation (AT,




3. spherical coordinates. quation of cunve detined by intersection of surtace
Por o) Owith surtace Gorthy - 00 Fhen
F F F

6 ¢ _ r Fa
e G G G

ar 17 ¢ g T €

¢ ) ’

ds F F | d 'y F !

be ¢ T ¢
G G G G

r ¢ r ¢

I quations (A24) are used to compute 1 and ¢~

cquation (A8

A-4. Discrete representation of curves.

Fhen pos computed from

Fetr,. ry and ry be radios vectors to points on the curve with r going to the mid-
Ao

dle of the thiree points,

‘ - v,
| n,
\X!
U
[ . v L) FRU RN
AA
Ionemy)?
then

”

. o RN
) try £ 2rpron-n, i),

by, b= vy | othen reduces to

A7
» ‘

MBI L M

then detime y )

sonp iy and rs by

v, r.oor,
A A 35
n, -
v,
[a A
v, N,- N, N,
r T -

I tnygeng v
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